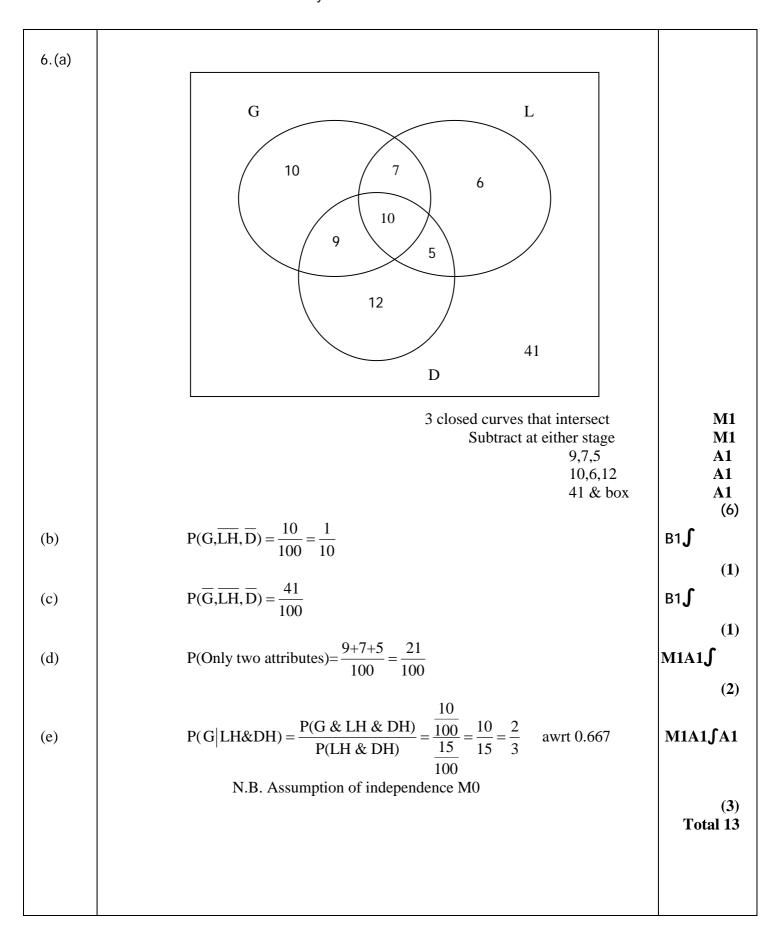


GCE
Edexcel GCE
Statistics S1 (6683)

June 2006

advancing learning, changing lives

Mark Scheme (Results)



June 2006 6683 Statistics S1 Mark Scheme

Question Number	Scheme	Marks
1(a)	Indicates max / median / min / upper quartile/ lower quartile (2 or more) Indicates outliers (or equivalent description) Illustrates skewness (or equivalent description e.g. shape) Any 3 rows Allows comparisons Indicates range / IQR / spread	B1 B1 B1
(b)(i) (ii)	37 (minutes) Upper quartile or Q_3 or third quartile or 75^{th} percentile or P_{75}	(3) B1 B1 (2)
(c)	Outlier's How to calculate correctly 'Observations that are very different from the other observations and need to be treated with caution' These two children probably walked / took a lot longer Any 2	B1 B1 (2)
(d)	20 30 40 50 60 Time (School B)	(2)
	Box & median & whiskers Sensible scale 30,37,50 25,55	M1 B1 B1 B1 (4)
(e)	Children from school A generally took less time Any correct 4 lines 50% of B \leq 37 mins, 75% of A < 37 mins (similarly for 30) Median/Q1/Q3 of A < median/Q1/Q3 of B (1 or more) A has outliers, (B does not) Both positive skew IQR of A <iqr a="" b,="" of="" range="">range of B</iqr>	B1 B1 B1 B1
		(4) Total 15

Question Number	Scheme			
2. (a)	P(both longer than 24.5)= $\frac{11}{55} \times \frac{10}{54} = \frac{1}{27}$ or $0.\dot{0}\dot{3}\dot{7}$ or 0.037 2 fracs x w/o rep. awrt 0.037	M1A1 (2)		
(b)	Estimate of mean time spent on their conversations is			
	$\overline{x} = \frac{1060}{55} = 19\frac{3}{11}$ or $19.\dot{2}\dot{7}$ or 19.3 1060/total, awrt 19.3 or 19mins 16s	M1A1		
(c)	$\frac{1060 + \sum fy}{80} = 21$ 21x80=1680	(2) B1		
	$\sum fy = 620$ Subtracting 'their 1060'	M1		
	$\therefore \overline{y} = \frac{620}{25} = 24.8$ Dividing their 620 by 25	M1A1		
(d)	Increase in mean value. Length of conversations increased considerably	(4) B1		
	during 25 weeks relative to 55 weeks context - ft only from comment above	$B1\int_{(2)}$		
		Total 10		
3. (a)	$\sum x = \sum t = 337.1, \sum y = 16.28$ Can be implied	B1,B1		
	$S_{xy} = 757.467 - \frac{337.1 \times 16.28}{8} = 71.4685$ either method, awrt 71.5	M1A1		
	$S_{xx} = 15965.01 - \frac{337.1^2}{8} = 1760.45875$ awrt 1760	A1		
(b) M1A1	$b = \frac{71.4685}{1760.45875} = 0.04059652$ / correct way up, awrt 0.0406	(5)		
	$a = \frac{16.28}{8} - b \times \frac{337.1}{8} = 0.324364$ using correct formula, awrt 0.324	M1A1		
	y = 0.324 + 0.0406x 3 sf or better but award for copying from above	A1 ∫ (5)		
(c)	At $t = 40$, $x = 40$, $y = 1.948$, $l = 2461.948$ sub $x = 40$, awrt 1.95, awrt 2461.95	M1A1A1 ∫		
(d)	l-2460=0.324+0.0406t LHS required awrt 2460.32, f.t. their 0.0406, / and	(3) M1 I <i>t</i>		
(e)	At $t = 90$, $l = 2463.978$ awrt 2464	(2) B1 (1)		
(f)	90°C outside range of data unlikely to be reliable	B1		

4 (a)	E(X) = 3; $Var(X) = \frac{25-1}{12} = 2$ **AG**		В1
	Var(X) = $1^2 \times \frac{1}{5} + 2^2 \times \frac{1}{5} + 3^2 \times \frac{1}{5} + \dots - 3^2 = 11$ Accept (55/5)-9 as minimum evidence.	1-9=2 **AG**	M1A1
(b) M1A1 ∫	E(3X - 2) = 3E(X) - 2 = 7		(3)
(c)	$Var(4-3x) = 3^2 Var(X) = 18$		(2) M1A1 (2) ——Total 7
5(a)	т		
	0.3 0.2 2 separate sketches OK. Bell Shape 1.78 & 0.2 1.65 & 0.3		
	Accept clear alternatives to 0.3: 0.		B1
(b)	$\frac{1.78 - \mu}{\sigma} = 0.8416 \Rightarrow 1.78 - \mu = 0.8416\sigma$	either for method	(3) M1
		0.8416	B1
	$\frac{1.65 - \mu}{\sigma} = -0.5244 \Rightarrow 1.65 - \mu = -0.5244\sigma$	(-)0.5244	B1
	Solving gives $\mu = 1.70, \sigma = 0.095$	N.B. awrt 0.84, 0.52 B1B0 awrt 1.7, 0.095 cao	M1A1A1 (6)
(c)	$P(height \ge 1.74) = 1 - P(height < 1.74)$	'one minus'	M1
	$=1-P\left(Z<\frac{1.74-1.70}{0.095}\right)$	standardise with their mu and sigma	M1
	= 1 - P(Z < 0.42) = 0.3372	awrt 0.337	A1 (3)

